Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 15(5): e0008624, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534157

RESUMO

Dynamic transposition of transposable elements (TEs) in fungal pathogens has significant impact on genome stability, gene expression, and virulence to the host. In Magnaporthe oryzae, genome plasticity resulting from TE insertion is a major driving force leading to the rapid evolution and diversification of this fungus. Despite their importance in M. oryzae population evolution and divergence, our understanding of TEs in this context remains limited. Here, we conducted a genome-wide analysis of TE transposition dynamics in the 11 most abundant TE families in M. oryzae populations. Our results show that these TEs have specifically expanded in recently isolated M. oryzae rice populations, with the presence/absence polymorphism of TE insertions highly concordant with population divergence on Geng/Japonica and Xian/Indica rice cultivars. Notably, the genes targeted by clade-specific TEs showed clade-specific expression patterns and are involved in the pathogenic process, suggesting a transcriptional regulation of TEs on targeted genes. Our study provides a comprehensive analysis of TEs in M. oryzae populations and demonstrates a crucial role of recent TE bursts in adaptive evolution and diversification of the M. oryzae rice-infecting lineage. IMPORTANCE: Magnaporthe oryzae is the causal agent of the destructive blast disease, which caused massive loss of yield annually worldwide. The fungus diverged into distinct clades during adaptation toward the two rice subspecies, Xian/Indica and Geng/Japonica. Although the role of TEs in the adaptive evolution was well established, mechanisms underlying how TEs promote the population divergence of M. oryzae remain largely unknown. In this study, we reported that TEs shape the population divergence of M. oryzae by differentially regulating gene expression between Xian/Indica-infecting and Geng/Japonica-infecting populations. Our results revealed a TE insertion-mediated gene expression adaption that led to the divergence of M. oryzae population infecting different rice subspecies.


Assuntos
Elementos de DNA Transponíveis , Evolução Molecular , Genoma Fúngico , Oryza , Doenças das Plantas , Elementos de DNA Transponíveis/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética , Variação Genética , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/patogenicidade , Magnaporthe/genética , Magnaporthe/patogenicidade , Magnaporthe/classificação
2.
Plant Dis ; 103(12): 3181-3188, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31638864

RESUMO

A total of 99 isolates of rice blast (Pyricularia oryzae Cavara) were collected from 2010 to 2015 from four regions in Kenya: Kirinyaga County and Embu County, Kisumu County, Tana River County, and Mombasa County. The pathogenicities of these isolates were clarified based on the reaction patterns of Lijiangxintuanheigu and differential varieties (DVs) targeting 23 resistance genes. The frequency of virulent isolates was high for DVs for Pib, Pia, Pii, Pi3, Pi5(t), Pik-s, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Pi19(t), and Pi20(t); low for DVs for Pish, Pi9(t), Piz-5, and Piz-t; and intermediate for the remaining DVs for Pit, Piz, Pita-2, Pita, and Pi12(t). These blast isolates were classified into three cluster groups: Ia, Ib, and II. The frequencies of virulent isolates to DVs for Pit, Pii, Pik-m, Pi1, Pik-h, Pik, Pik-p, Pi7(t), Piz, and Pi12(t) differed markedly between clusters I and II, and those of DVs for Pib, Pit, Pia, Pi3, Pita-2, Pita, and Pi20(t) differed between Ia and Ib. The frequencies of cluster groups in the four geographical regions were different. A total of 62 races were found, with 19 blast isolates categorized into one race (U63-i7-k177-z00-ta003), whereas the other races included only some isolates in each.


Assuntos
Magnaporthe , Oryza , Quênia , Magnaporthe/classificação , Magnaporthe/patogenicidade , Oryza/microbiologia , Virulência
3.
Plant Dis ; 103(11): 2759-2763, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31509496

RESUMO

Rice blast caused by the fungus Magnaporthe oryzae is one of the most destructive diseases of rice. Its control through the deployment of host resistance genes would be facilitated by understanding the pathogen's race structure. Here, dynamics of race structures in this decade in Heilongjiang province were characterized by Chinese differential cultivars. Two patterns of dynamics of the race structures emerged: both race diversity and population-specific races increased gradually between 2006 and 2011, but they increased much more sharply between 2011 and 2015, with concomitant falls in both the population-common races and dominant races. Four races (ZD1, ZD3, ZD5, and ZE1) were among the top three dominant races over the whole period, indicating that the core of the race structure remained stable through this decade. On the host side, the composition of resistance in the cultivar differential set could be divided in two: the three indica-type entries of the differential set expressed a higher level of resistance to the population of M. oryzae isolates tested than did the four japonica-type entries. The cultivars Tetep and Zhenlong 13 as well as two additional resistance genes α and ε were confirmed as the most promising donors of blast resistance for the local rice improvement programs.[Formula: see text]Copyright © 2019 The Author(s). This is an open-access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Magnaporthe , Oryza , China , Resistência à Doença/genética , Variação Genética , Magnaporthe/classificação , Magnaporthe/genética , Oryza/genética , Oryza/microbiologia
4.
Phytopathology ; 109(4): 504-508, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30253117

RESUMO

The blast fungus Magnaporthe oryzae is comprised of lineages that exhibit varying degrees of specificity on about 50 grass hosts, including rice, wheat, and barley. Reliable diagnostic tools are essential given that the pathogen has a propensity to jump to new hosts and spread to new geographic regions. Of particular concern is wheat blast, which has suddenly appeared in Bangladesh in 2016 before spreading to neighboring India. In these Asian countries, wheat blast strains are now co-occurring with the destructive rice blast pathogen raising the possibility of genetic exchange between these destructive pathogens. We assessed the recently described MoT3 diagnostic assay and found that it did not distinguish between wheat and rice blast isolates from Bangladesh. The assay is based on primers matching the WB12 sequence corresponding to a fragment of the M. oryzae MGG_02337 gene annotated as a short chain dehydrogenase. These primers could not reliably distinguish between wheat and rice blast isolates from Bangladesh based on DNA amplification experiments performed in separate laboratories in Bangladesh and in the United Kingdom. Specifically, all eight rice blast isolates tested in this study produced the WB12 amplicon. In addition, comparative genomics of the WB12 nucleotide sequence revealed a complex underlying genetic structure with related sequences across M. oryzae strains and in both rice and wheat blast isolates. We, therefore, caution against the indiscriminate use of this assay to identify wheat blast and encourage further development of the assay to ensure its value in diagnosis.


Assuntos
Magnaporthe , Técnicas de Diagnóstico Molecular , Oryza , Doenças das Plantas , Ásia , Bangladesh , Genótipo , Índia , Magnaporthe/classificação , Magnaporthe/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Poaceae , Triticum , Reino Unido
5.
BMC Genomics ; 19(1): 927, 2018 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-30545292

RESUMO

BACKGROUND: A number of Pyricularia species are known to infect different grass species. In the case of Pyricularia oryzae (syn. Magnaporthe oryzae), distinct populations are known to be adapted to a wide variety of grass hosts, including rice, wheat and many other grasses. The genome sizes of Pyricularia species are typical for filamentous ascomycete fungi [~ 40 Mbp for P. oryzae, and ~ 45 Mbp for P. grisea]. Genome plasticity, mediated in part by deletions promoted by recombination between repetitive elements [Genome Res 26:1091-1100, 2016, Nat Rev Microbiol 10:417-430,2012] and transposable elements [Annu Rev Phytopathol 55:483-503,2017] contributes to host adaptation. Therefore, comparisons of genome structure of individual species will provide insight into the evolution of host specificity. However, except for the P. oryzae subgroup, little is known about the gene content or genome organization of other Pyricularia species, such as those infecting Pennisetum grasses. RESULTS: Here, we report the genome sequence of P. penniseti strain P1609 isolated from a Pennisetum grass (JUJUNCAO) using PacBio SMRT sequencing technology. Phylogenomic analysis of 28 Magnaporthales species and 5 non-Magnaporthales species indicated that P1609 belongs to a Pyricularia subclade, which is genetically distant from P. oryzae. Comparative genomic analysis revealed that the pathogenicity-related gene repertoires had diverged between P1609 and the P. oryzae strain 70-15, including the known avirulence genes, other putative secreted proteins, as well as some other predicted Pathogen-Host Interaction (PHI) genes. Genomic sequence comparison also identified many genomic rearrangements relative to P. oryzae. CONCLUSION: Our results suggested that the genomic sequence of the P. penniseti P1609 could be a useful resource for the genetic study of the Pennisetum-infecting Pyricularia species and provide new insight into evolution of pathogen genomes during host adaptation.


Assuntos
Ascomicetos/genética , Hibridização Genômica Comparativa , Genes Fúngicos , Pennisetum/microbiologia , Ascomicetos/classificação , Ascomicetos/patogenicidade , DNA Fúngico/química , DNA Fúngico/isolamento & purificação , DNA Fúngico/metabolismo , Rearranjo Gênico , Interações Hospedeiro-Patógeno/genética , Magnaporthe/classificação , Magnaporthe/genética , Magnaporthe/patogenicidade , Filogenia , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Virulência/genética
6.
mBio ; 9(2)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615506

RESUMO

The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is both a threat to global food security and a model for plant pathology. Molecular pathologists need an accurate understanding of the origins and line of descent of M. oryzae populations in order to identify the genetic and functional bases of pathogen adaptation and to guide the development of more effective control strategies. We used a whole-genome sequence analysis of samples from different times and places to infer details about the genetic makeup of M. oryzae from a global collection of isolates. Analyses of population structure identified six lineages within M. oryzae, including two pandemic on japonica and indica rice, respectively, and four lineages with more restricted distributions. Tip-dating calibration indicated that M. oryzae lineages separated about a millennium ago, long after the initial domestication of rice. The major lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and evidence of DNA acquisition from multiple lineages. Tests for weak natural selection revealed that the pandemic spread of clonal lineages entailed an evolutionary "cost," in terms of the accumulation of deleterious mutations. Our findings reveal the coexistence of multiple endemic and pandemic lineages with contrasting population and genetic characteristics within a widely distributed pathogen.IMPORTANCE The rice blast fungus Magnaporthe oryzae (syn., Pyricularia oryzae) is a textbook example of a rapidly adapting pathogen, and it is responsible for one of the most damaging diseases of rice. Improvements in our understanding of Magnaporthe oryzae's diversity and evolution are required to guide the development of more effective control strategies. We used genome sequencing data for samples from around the world to infer the evolutionary history of M. oryzae We found that M. oryzae diversified about 1,000 years ago, separating into six main lineages: two pandemic on japonica and indica rice, respectively, and four with more restricted distributions. We also found that a lineage endemic to continental Southeast Asia displayed signatures of sexual recombination and the acquisition of genetic material from multiple lineages. This work provides a population-level genomic framework for defining molecular markers for the control of rice blast and investigations of the molecular basis of differences in pathogenicity between M. oryzae lineages.


Assuntos
Variação Genética , Magnaporthe/classificação , Magnaporthe/isolamento & purificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Genótipo , Magnaporthe/genética , Filogeografia , Sequenciamento Completo do Genoma
7.
mBio ; 9(1)2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29487238

RESUMO

Delineating species and epidemic lineages in fungal plant pathogens is critical to our understanding of disease emergence and the structure of fungal biodiversity and also informs international regulatory decisions. Pyricularia oryzae (syn. Magnaporthe oryzae) is a multihost pathogen that infects multiple grasses and cereals, is responsible for the most damaging rice disease (rice blast), and is of growing concern due to the recent introduction of wheat blast to Bangladesh from South America. However, the genetic structure and evolutionary history of M. oryzae, including the possible existence of cryptic phylogenetic species, remain poorly defined. Here, we use whole-genome sequence information for 76 M. oryzae isolates sampled from 12 grass and cereal genera to infer the population structure of M. oryzae and to reassess the species status of wheat-infecting populations of the fungus. Species recognition based on genealogical concordance, using published data or extracting previously used loci from genome assemblies, failed to confirm a prior assignment of wheat blast isolates to a new species (Pyricularia graminis-tritici). Inference of population subdivisions revealed multiple divergent lineages within M. oryzae, each preferentially associated with one host genus, suggesting incipient speciation following host shift or host range expansion. Analyses of gene flow, taking into account the possibility of incomplete lineage sorting, revealed that genetic exchanges have contributed to the makeup of multiple lineages within M. oryzae These findings provide greater understanding of the ecoevolutionary factors that underlie the diversification of M. oryzae and highlight the practicality of genomic data for epidemiological surveillance in this important multihost pathogen.IMPORTANCE Infection of novel hosts is a major route for disease emergence by pathogenic microorganisms. Understanding the evolutionary history of multihost pathogens is therefore important to better predict the likely spread and emergence of new diseases. Magnaporthe oryzae is a multihost fungus that causes serious cereal diseases, including the devastating rice blast disease and wheat blast, a cause of growing concern due to its recent spread from South America to Asia. Using whole-genome analysis of 76 fungal strains from different hosts, we have documented the divergence of M. oryzae into numerous lineages, each infecting a limited number of host species. Our analyses provide evidence that interlineage gene flow has contributed to the genetic makeup of multiple M. oryzae lineages within the same species. Plant health surveillance is therefore warranted to safeguard against disease emergence in regions where multiple lineages of the fungus are in contact with one another.


Assuntos
Fluxo Gênico , Magnaporthe/genética , Bangladesh , Biota , Grão Comestível/microbiologia , Transferência Genética Horizontal , Variação Genética , Magnaporthe/classificação , Magnaporthe/isolamento & purificação , Poaceae/microbiologia , Análise de Sequência de DNA , América do Sul , Sequenciamento Completo do Genoma
8.
ISME J ; 12(8): 1867-1878, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29568114

RESUMO

We examined the genomes of 100 isolates of Magnaporthe oryzae (Pyricularia oryzae), the causal agent of rice blast disease. We grouped current field populations of M. oryzae into three major globally distributed groups. A genetically diverse group, clade 1, which may represent a group of closely related lineages, contains isolates of both mating types. Two well-separated clades, clades 2 and 3, appear to have arisen as clonal lineages distinct from the genetically diverse clade. Examination of genes involved in mating pathways identified clade-specific diversification of several genes with orthologs involved in mating behavior in other fungi. All isolates within each clonal lineage are of the same mating type. Clade 2 is distinguished by a unique deletion allele of a gene encoding a small cysteine-rich protein that we determined to be a virulence factor. Clade 3 isolates have a small deletion within the MFA2 pheromone precursor gene, and this allele is shared with an unusual group of isolates we placed within clade 1 that contain AVR1-CO39 alleles. These markers could be used for rapid screening of isolates and suggest specific events in evolution that shaped these populations. Our findings are consistent with the view that M. oryzae populations in Asia generate diversity through recombination and may have served as the source of the clades 2 and 3 isolates that comprise a large fraction of the global population.


Assuntos
Magnaporthe/genética , Genes Fúngicos , Variação Genética , Genoma Fúngico , Genômica , Magnaporthe/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia
9.
Phytopathology ; 108(7): 878-884, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29384446

RESUMO

A set of differential isolates of Magnaporthe oryzae is needed for the postulation of blast resistance genes in numerous rice varieties and breeding materials. In this study, the pathotypes of 1,377 M. oryzae isolates from different regions of China were determined by inoculating detached rice leaves of 24 monogenic lines. Among them, 25 isolates were selected as differential isolates based on the following characteristics: they had distinct responses on the monogenic lines, contained the minimum number of avirulence genes, were stable in pathogenicity and conidiation during consecutive culture, were consistent colony growth rate, and, together, could differentiate combinations of the 24 major blast resistance genes. Seedlings of rice cultivars were inoculated with this differential set of isolates to postulate whether they contain 1 or more than 1 of the 24 blast resistance genes. The results were consistent with those from polymerase chain reaction analysis of target resistance genes. Establishment of a standard set of differential isolates will facilitate breeding for blast resistance and improved management of rice blast disease.


Assuntos
Resistência à Doença/genética , Magnaporthe/classificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética
10.
Microb Ecol ; 75(2): 310-317, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28755027

RESUMO

Rice blast, caused by the ascomycete Magnaporthe oryzae, is one of the most destructive rice diseases worldwide. Even though the disease has been present in California since 1996, there is no data for the pathogen population biology in the state. Using amplified fragment length polymorphisms and mating-type markers, the M. oryzae population diversity was investigated using isolates collected when the disease was first established in California and isolates collected a decade later. While in the 1990 samples, a single multilocus genotype (MLG) was identified (MLG1), over a decade later, we found 14 additional MLGs in the 2000 isolates. Some of these MLGs were found to infect the only rice blast-resistant cultivar (M-208) available for commercial production in California. The same samples also had a significant decrease of MLG1. MLG1 was found infecting the resistant rice cultivar M-208 on one occasion whereas MLG7 was the most common genotype infecting the M-208. MLG7 was identified in the 2000 samples, and it was not present in the M. oryzae population a decade earlier. Our results demonstrate a significant increase in genotypic diversity over time with no evidence of sexual reproduction and suggest a recent introduction of new virulent race(s) of the pathogen. In addition, our data could provide information regarding the durability of the Pi-z resistance gene of the M-208. This information will be critical to plant breeders in developing strategies for deployment of other rice blast resistance genes/cultivars in the future.


Assuntos
Magnaporthe/genética , Magnaporthe/isolamento & purificação , Oryza/microbiologia , Doenças das Plantas/microbiologia , California , Variação Genética , Genótipo , Magnaporthe/classificação , Magnaporthe/fisiologia , Oryza/crescimento & desenvolvimento , Filogenia
11.
Microbiol Res ; 204: 55-64, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28870292

RESUMO

The abundance of phyllosphere bacterial communities of seven genotypes of rice ADT- 38, ADT-43, CR-1009, PB-1, PS-5, P-44, and PB-1509 was investigated, in relation to nutrient dynamics of rhizosphere and leaves. P-44 genotype recorded highest pigment accumulation, while genotypes CR-1009 and P-44 exhibited most number of different bacterial morphotypes, Colony forming units in two media (Nutrient agar and R2A) varied significantly and ranged from 106-107 per g plant tissues. Among the selected 60 distinct morphotypes, IAA and siderophore producers were the dominant functional types. Biocontrol activity against Drechslera oryzae was shown by 38 isolates, while 17 and 9 isolates were potent against Rhizoctonia solani and Magnaporthe oryzae respectively. Principal Component Analysis (PCA) illustrated the significant effects of selected soil and leaf nutrients of seven rice varieties on the culturable phyllospheric population (log CFU), particularly in the R2A medium. Eigen values revealed that 83% of the variance observed could be assigned to Leaf-Fe, Leaf-Mn, chlorophyll b and soil organic carbon (OC). Quantitative PCR analyses of abundance of bacteria, cyanobacteria and archaebacteria revealed a host-specific response, with CR-1009 showing highest number of 16S rRNA copies of bacterial members, while both P-44 and PS-5 had higher cyanobacterial abundance, but lowest number of those belonging to archaebacteria. Nutritional aspects of leaf and soil influenced the abundance of bacteria and their functional attributes; this is of interest for enhancing the efficacy of foliar inoculants, thereby, improving plant growth and disease tolerance.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Microbiota , Oryza/classificação , Oryza/microbiologia , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/genética , Bactérias/metabolismo , Contagem de Colônia Microbiana , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/isolamento & purificação , DNA Bacteriano , Alimentos , Genótipo , Magnaporthe/classificação , Magnaporthe/genética , Magnaporthe/isolamento & purificação , Microbiota/genética , Microbiota/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Controle Biológico de Vetores , Filogenia , Folhas de Planta/química , Folhas de Planta/microbiologia , Densidade Demográfica , RNA Ribossômico 16S/genética , Rhizoctonia/classificação , Rhizoctonia/genética , Rhizoctonia/isolamento & purificação , Rizosfera , Solo/química
12.
BMC Genomics ; 17: 370, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27194050

RESUMO

BACKGROUND: Magnaporthe oryzae (anamorph Pyricularia oryzae) is the causal agent of blast disease of Poaceae crops and their wild relatives. To understand the genetic mechanisms that drive host specialization of M. oryzae, we carried out whole genome resequencing of four M. oryzae isolates from rice (Oryza sativa), one from foxtail millet (Setaria italica), three from wild foxtail millet S. viridis, and one isolate each from finger millet (Eleusine coracana), wheat (Triticum aestivum) and oat (Avena sativa), in addition to an isolate of a sister species M. grisea, that infects the wild grass Digitaria sanguinalis. RESULTS: Whole genome sequence comparison confirmed that M. oryzae Oryza and Setaria isolates form a monophyletic and close to another monophyletic group consisting of isolates from Triticum and Avena. This supports previous phylogenetic analysis based on a small number of genes and molecular markers. When comparing the host specific subgroups, 1.2-3.5 % of genes showed presence/absence polymorphisms and 0-6.5 % showed an excess of non-synonymous substitutions. Most of these genes encoded proteins whose functional domains are present in multiple copies in each genome. Therefore, the deleterious effects of these mutations could potentially be compensated by functional redundancy. Unlike the accumulation of nonsynonymous nucleotide substitutions, gene loss appeared to be independent of divergence time. Interestingly, the loss and gain of genes in pathogens from the Oryza and Setaria infecting lineages occurred more frequently when compared to those infecting Triticum and Avena even though the genetic distance between Oryza and Setaria lineages was smaller than that between Triticum and Avena lineages. In addition, genes showing gain/loss and nucleotide polymorphisms are linked to transposable elements highlighting the relationship between genome position and gene evolution in this pathogen species. CONCLUSION: Our comparative genomics analyses of host-specific M. oryzae isolates revealed gain and loss of genes as a major evolutionary mechanism driving specialization to Oryza and Setaria. Transposable elements appear to facilitate gene evolution possibly by enhancing chromosomal rearrangements and other forms of genetic variation.


Assuntos
Elementos de DNA Transponíveis , Genes Fúngicos , Variação Genética , Interações Hospedeiro-Patógeno , Magnaporthe/genética , Mapeamento Cromossômico , Cromossomos Fúngicos , Evolução Molecular , Genoma Fúngico , Genômica/métodos , Magnaporthe/classificação , Mutação , Filogenia
13.
Curr Genet ; 62(4): 861-871, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26979515

RESUMO

Conidia play important roles in primary and secondary infections of airborne fungal pathogens. In this study, an insertional mutant with reduced capacity for conidiation was isolated from the rice blast fungus Magnaporthe oryzae. The mutant has a T-DNA insertion that disrupts a gene named MoCPS1. The deduced MoCps1 protein contains three AMP-binding domains. Gene complementation and gene knockout assays confirmed that MoCPS1 is important for conidiation. Conidia produced by the MoCPS1 deletion mutants are much more slender and longer than those produced by the wild-type strain. The Mocps1 mutants are less efficient in both appressorial penetration and invasive growth of infection hyphae, resulting in attenuated virulence toward host plants. MoCPS1 is highly expressed in a mature appressorium. Interestingly, the expression levels of several genes related to conidiation and pathogenicity have been significantly altered in the MoCPS1 deletion mutants. Taken together, our results indicated that MoCPS1 is important for conidiogenesis, conidial morphogenesis, and pathogenesis in the rice blast fungus.


Assuntos
Carboxipeptidases/genética , Carboxipeptidases/metabolismo , Magnaporthe/fisiologia , Esporos Fúngicos , Carboxipeptidases/química , Deleção de Genes , Genes Fúngicos , Hifas , Magnaporthe/classificação , Magnaporthe/patogenicidade , Mutação , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Estresse Fisiológico , Virulência/genética
14.
Mol Plant Pathol ; 17(6): 796-804, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26575082

RESUMO

TAXONOMY: Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Magnaporthales; Family Pyriculariaceae (anamorph)/Magnaporthaceae (teleomorph); Genus Pyricularia (anamorph)/Magnaporthe (teleomorph); Species P. grisea (anamorph)/M. grisea (teleomorph). HOST RANGE: Very broad at the species level, including rice, wheat, barley, millet and other species of the Poaceae (Gramineae). DISEASE SYMPTOMS: Can be found on all parts of the plant, including leaves, leaf collars, necks, panicles, pedicels, seeds and even the roots. Initial symptoms are white to grey-green lesions or spots with darker borders, whereas older lesions are elliptical or spindle-shaped and whitish to grey with necrotic borders. Lesions may enlarge and coalesce to eventually destroy the entire leaf. DISEASE CONTROL: Includes cultural strategies, genetic resistance and the application of chemical fungicides. GEOGRAPHICAL DISTRIBUTION: Widespread throughout the rice-growing regions of the globe and has been reported in more than 85 countries. GENOMIC STRUCTURE: Different isolates possess similar genomic sizes and overall genomic structures. For the laboratory strain 70-15: assembly size, 40.98 Mb; number of chromosomes, seven; number of predicted genes, 13 032; G + C composition, 51.6%; average gene contains 451.6 amino acids; mitochondrion genome size, 34.87 kb. USEFUL WEBSITE: http://www.broadinstitute.org/annotation/genome/magnaporthe_comparative/MultiHome.html.


Assuntos
Interações Hospedeiro-Patógeno , Magnaporthe/fisiologia , Doenças das Plantas/microbiologia , Sequência de Bases , Magnaporthe/classificação , Magnaporthe/genética , Magnaporthe/isolamento & purificação , Filogenia , Terminologia como Assunto
15.
Nat Commun ; 6: 8758, 2015 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-26503170

RESUMO

Tenuazonic acid (TeA) is a well-known mycotoxin produced by various plant pathogenic fungi. However, its biosynthetic gene has been unknown to date. Here we identify the TeA biosynthetic gene from Magnaporthe oryzae by finding two TeA-inducing conditions of a low-producing strain. We demonstrate that TeA is synthesized from isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1). TAS1 is a unique non-ribosomal peptide synthetase and polyketide synthase (NRPS-PKS) hybrid enzyme that begins with an NRPS module. In contrast to other NRPS/PKS hybrid enzymes, the PKS portion of TAS1 has only a ketosynthase (KS) domain and this domain is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS domain as an independent clade close to type I PKS KS domain. We demonstrate that the TAS1 KS domain conducts the final cyclization step for TeA release. These results indicate that TAS1 is a unique type of NRPS-PKS hybrid enzyme.


Assuntos
Proteínas Fúngicas/metabolismo , Magnaporthe/enzimologia , Micotoxinas/biossíntese , Peptídeo Sintases/metabolismo , Policetídeo Sintases/metabolismo , Ácido Tenuazônico/biossíntese , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Magnaporthe/classificação , Magnaporthe/genética , Magnaporthe/metabolismo , Peptídeo Sintases/química , Peptídeo Sintases/genética , Filogenia , Policetídeo Sintases/química , Policetídeo Sintases/genética , Estrutura Terciária de Proteína
16.
Sci Rep ; 5: 11642, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109439

RESUMO

Magnaporthe oryzae (Mo) is the causative pathogen of the damaging disease rice blast. The effector gene AvrPib, which confers avirulence to host carrying resistance gene Pib, was isolated via map-based cloning. The gene encodes a 75-residue protein, which includes a signal peptide. Phenotyping and genotyping of 60 isolates from each of five geographically distinct Mo populations revealed that the frequency of virulent isolates, as well as the sequence diversity within the AvrPib gene increased from a low level in the far northeastern region of China to a much higher one in the southern region, indicating a process of host-driven selection. Resequencing of the AvrPiballele harbored by a set of 108 diverse isolates revealed that there were four pathoways, transposable element (TE) insertion (frequency 81.7%), segmental deletion (11.1%), complete absence (6.7%), and point mutation (0.6%), leading to loss of the avirulence function. The lack of any TE insertion in a sample of non-rice infecting Moisolates suggested that it occurred after the host specialization of Mo. Both the deletions and the functional point mutation were confined to the signal peptide. The reconstruction of 16 alleles confirmed seven functional nucleotide polymorphisms for the AvrPiballeles, which generated three distinct expression profiles.


Assuntos
Proteínas de Transporte/genética , Genes Fúngicos/genética , Magnaporthe/genética , Oryza/genética , Doenças das Plantas/genética , Proteínas de Plantas/genética , Sequência de Bases , China , Mapeamento Cromossômico , Clonagem Molecular , Elementos de DNA Transponíveis/genética , Evolução Molecular , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Frequência do Gene , Variação Genética , Genótipo , Geografia , Interações Hospedeiro-Patógeno/genética , Magnaporthe/classificação , Magnaporthe/patogenicidade , Dados de Sequência Molecular , Mutação , Oryza/microbiologia , Proteínas de Ligação a Fosfato , Filogenia , Doenças das Plantas/microbiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Virulência/genética
17.
Environ Microbiol ; 17(4): 1425-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25314920

RESUMO

Regulatory roles of the basic leucine zipper (bZIP) transcription factors (TFs) in fungi have been identified in diverse cellular processes such as development, nutrient utilization and various stress responses. In this study, the 22 Magnaporthe oryzae genes encoding bZIP TFs were systematically characterized. Phylogenetic analysis of fungal bZIP TFs revealed that seven MobZIPs are Magnaporthe-specific, while others belongs to 15 clades of orthologous Ascomycota genes. Expression patterns of MobZIPs under various conditions showed that they are highly stress responsive. We generated deletion mutants for 13 MobZIPs: nine with orthologues in other fungal species and four Magnaporthe-specific ones. Seven of them exhibited defects in mycelial growth, development and/or pathogenicity. Consistent with the conserved functions of the orthologues, MobZIP22 and MobZIP13 played a role in sulfur metabolism and iron homeostasis respectively. Along with MobZIP22 and MobZIP13, one Magnaporthe-specific gene, MobZIP11 is essential for pathogenicity in a reactive oxygen species-dependent manner. Taken together, our results will contribute to understanding the regulatory mechanisms of the bZIP TF gene family in fungal development, adaptation to environmental stresses and pathogenicity in the rice blast fungus.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas Fúngicas/genética , Magnaporthe/genética , Família Multigênica , Oryza/microbiologia , Doenças das Plantas/microbiologia , Sequência de Aminoácidos , Fatores de Transcrição de Zíper de Leucina Básica/química , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fungos/química , Fungos/classificação , Fungos/genética , Magnaporthe/química , Magnaporthe/classificação , Magnaporthe/metabolismo , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência
18.
PLoS One ; 8(2): e57196, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23468934

RESUMO

Outbreaks of rice blast have been a threat to the global production of rice. Members of the Magnaporthe grisea species complex cause blast disease on a wide range of gramineous hosts, including cultivated rice and other grass species. Recently, based on phylogenetic analyses and mating tests, isolates from crabgrass were separated from the species complex and named M. grisea. Then other isolates from grasses including rice were named as M. oryzae. Here, we collected 103 isolates from 11 different species of grasses in Korea and analyzed their phylogenetic relationships and pathogenicity. Phylogenetic analyses of multilocus sequences and DNA fingerprinting revealed that the haplotypes of most isolates were associated with their hosts. However, six isolates had different haplotypes from the expectation, suggesting potential host shift in nature. Results of pathogenicity tests demonstrated that 42 isolates from crabgrass and 19 isolates from rice and other grasses showed cross-infectivity on rice and crabgrass, respectively. Interestingly, we also found that the isolates from rice had a distinct deletion in the calmodulin that can be used as a probe.


Assuntos
Magnaporthe/classificação , Magnaporthe/patogenicidade , Filogenia , Sequência de Bases , Southern Blotting , Primers do DNA , Haplótipos , Oryza/microbiologia , Reação em Cadeia da Polimerase
19.
Mycologia ; 105(4): 1019-29, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23449077

RESUMO

The phylogenetic relationships among taxa in the Magnaporthaceae are investigated based on DNA sequences of multiple genes including SSU, ITS, LSU, MCM7, RPB1 and TEF1. The genera Magnaporthe and Gaeumannomyces are shown to be polyphyletic and their members are divided into four major groups based on the phylogenetic analyses. Considering morphological, biological and molecular data, we establish a new genus, Magnaporthiopsis. It is characterized by black and globose perithecia with a cylindrical neck, two-layered perithecial wall, clavate asci with a refractive apical ring, fusiform to fusoid and septate ascospores, simple hyphopodia, and Phialophora-like anamorph. Species in this genus are necrotrophic parasites infecting roots of grasses. Three new combinations, Magnaporthiopsis poae, M. rhizophila and M. incrustans, are proposed accordingly. Pyricularia is suggested as the generic name for the rice blast fungus over Magnaporthe, following Article 59.1 of the International Code of Nomenclature for algae, fungi and plants. A new combination, Nakataea oryzae, is proposed for the rice stem rot fungus.


Assuntos
Ascomicetos/classificação , Magnaporthe/classificação , Oryza/microbiologia , Filogenia
20.
PLoS Genet ; 8(8): e1002869, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22876203

RESUMO

Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases of rice worldwide. The fungal pathogen is notorious for its ability to overcome host resistance. To better understand its genetic variation in nature, we sequenced the genomes of two field isolates, Y34 and P131. In comparison with the previously sequenced laboratory strain 70-15, both field isolates had a similar genome size but slightly more genes. Sequences from the field isolates were used to improve genome assembly and gene prediction of 70-15. Although the overall genome structure is similar, a number of gene families that are likely involved in plant-fungal interactions are expanded in the field isolates. Genome-wide analysis on asynonymous to synonymous nucleotide substitution rates revealed that many infection-related genes underwent diversifying selection. The field isolates also have hundreds of isolate-specific genes and a number of isolate-specific gene duplication events. Functional characterization of randomly selected isolate-specific genes revealed that they play diverse roles, some of which affect virulence. Furthermore, each genome contains thousands of loci of transposon-like elements, but less than 30% of them are conserved among different isolates, suggesting active transposition events in M. oryzae. A total of approximately 200 genes were disrupted in these three strains by transposable elements. Interestingly, transposon-like elements tend to be associated with isolate-specific or duplicated sequences. Overall, our results indicate that gain or loss of unique genes, DNA duplication, gene family expansion, and frequent translocation of transposon-like elements are important factors in genome variation of the rice blast fungus.


Assuntos
Genoma Fúngico , Magnaporthe/genética , Magnaporthe/patogenicidade , Oryza/microbiologia , Doenças das Plantas/microbiologia , Elementos de DNA Transponíveis , Proteínas Fúngicas , Duplicação Gênica , Magnaporthe/classificação , Magnaporthe/isolamento & purificação , Dados de Sequência Molecular , Família Multigênica , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNA , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...